A Second Correlation Method for Multivariate Exchange Rates Forecasting
نویسندگان
چکیده
Foreign exchange market is one of the most complex dynamic market with high volatility, non linear and irregularity. As the globalization spread to the world, exchange rates forecasting become more important and complicated. Many external factors influence its volatility. To forecast the exchange rates, those external variables can be used and usually chosen based on the correlation to the predicted variable. A new second correlation method to improve forecasting accuracy is proposed. The second correlation is used to choose the external variable with different time interval. The proposed method is tested using six major monthly exchange rates with Nonlinear Autoregressive with eXogenous input (NARX) compared with Nonlinear Autoregressive (NAR) for model benchmarking. We evaluated the forecasting accuracy of proposed method is increasing by 16.8% compared to univariate NAR model and slight better than linear correlation on average for Dstat parameter and gives almost no improvement for MSE. Keywords—forecasting; foreign exchange; NARX; second correlation
منابع مشابه
Forecasting Conditional Correlation for Exchange Rates using Multivariate GARCH models with Historical Value-at-Risk application
The generalization from the univariate volatility model into a multivariate approach opens up a variety of modeling possibilities. This study aims to examine the performance of the two multivariate GARCH models BEKK and DCC, applied on ten years exchange rates data. Estimations and forecasts of the covariance matrix are made for the EUR/SEK and USD/SEK, whereby the forecasts are used in a pract...
متن کاملThe Comparison among ARIMA and hybrid ARIMA-GARCH Models in Forecasting the Exchange Rate of Iran
This paper attempts to compare the forecasting performance of the ARIMA model and hybrid ARMA-GARCH Models by using daily data of the Iran’s exchange rate against the U.S. Dollar (IRR/USD) for the period of 20 March 2014 to 20 June 2015. The period of 20 March 2014 to 19 April 2015 was used to build the model while remaining data were used to do out of sample forecasting and check the forecasti...
متن کاملA hybrid computational intelligence model for foreign exchange rate forecasting
Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...
متن کاملA Multivariate Random Walk Model with Slowly Changing Drift and Cross-correlation Applied to Finance
A new multivariate random walk model with slowly changing drift and cross-correlations for multivariate processes is introduced and investigated in detail. In the model, not only the drifts and the cross-covariances but also the cross-correlations between single series are allowed to change slowly over time. The model can accompany any number of components such as many number of assets. The mod...
متن کامل